
Device Fingerprinting with Peripheral Timestamps
John V. Monaco

Naval Postgraduate School, Monterey, CA

Abstract—Sensing and processing peripheral input is a ubiq-
uitous capability of personal computers. Text entry on physical
and virtual keyboards, mouse pointer motion, and touchscreen
gestures are the primary ways in which users interact with
websites viewed on desktop and mobile devices. Peripheral input
events must pass through a pipeline of hardware and software
processes before they reach the web browser. This pipeline
is device-dependent and often contains low-frequency polling
components, such as USB polling and process scheduling, that
influence event timing within the web page.

We show that a relatively unique device fingerprint is formed
by the timing of peripheral input events. No special permissions
are required to register callbacks to keyboard, mouse, and
touch events from within a web browser, and the technique
works on both desktop and mobile devices. We propose a dual
clock model in which both a fast reference clock and slow
subject clock are compared through a single time source. With
this model, the instantaneous phase of the subject clock is
measured and used to construct a phase image. The phase image
is then embedded in a low dimensional feature space using
FPNET, a convolutional neural network designed to extract a
device fingerprint from the instantaneous phase. Performance
is evaluated using a dataset containing 300M keyboard events
collected from over 228k devices observed in the wild. After about
two minutes of typing, a device fingerprint is formed that enables
87.35% verification accuracy among a population of 100k devices.
Combined with features that measure user behavior in addition
to device behavior, verification accuracy increases to 97.36%.
The methods described have potential as a second authentication
factor, but could also be used to track Internet users.

Index Terms—clock skew; triplet network; Internet privacy;

I. INTRODUCTION

Browser fingerprinting is the practice of measuring device-
specific attributes from within a web browser to perform
stateless tracking of Internet users [1]. A browser fingerprint
may include many different entropy sources ranging from
software properties, such as User-Agent, installed plugins,
and timezone, to hardware side effects, such as pixel-level
differences in the way images are rendered [2]. Fingerprint-
ing techniques have been extended to mobile device sensors
which have repeatedly been shown to enable device identifi-
cation [3], [4], [5]. As of 2021, at least one quarter of the
top-10k visited websites implement some form of browser
fingerprinting [6].

Time-based device fingerprinting techniques have evolved
alongside browser fingerprinting [7]. Timekeeping differences
among devices may result from manufacturing inconsisten-
cies as well as environmental conditions. Crystal oscillator
circuits are prone to changes in frequency based on ambient
temperature, which, if under an attacker’s control, could enable
targeted alias resolution [8]. This approach of device finger-
printing based on clock skew generally requires a reference

clock (presumably controlled by the attacker) to compare
measurements against. Recent work however has explored
the use of function execution time within a web browser to
obtain a device fingerprint [9]. This method relies instead on
differences in machine performance without the need for a
reference clock.

We introduce a new method to fingerprint devices based on
the timing of peripheral input events, leveraging differences in
the way various hardware and software components process
keyboard, mouse, and touchscreen input. User input must
pass through a chain of processes that sense and deliver the
events to an application, such as a web browser [10]. This
chain typically includes a microcontroller on the peripheral
device, communication protocol between the peripheral and
host, operating system (OS) scheduler, and browser event loop.
Many of these include low-frequency polling that is driven by
an independent clock from system time.

Device fingerprinting is possible due to unique charac-
teristics in the periodic behavior of hardware and software
components responsible for processing peripheral input. This
includes, for example, the timing of USB polls which originate
from the USB host controller operating off of an independent
clock from the host. The USB host controller regularly queries
USB devices for new events. Low-speed polling occurs at
around 125Hz, although depending on the device it could
be slightly faster or slower. In addition, frequency drift and
variations in the period between polls, i.e., timing jitter, are
observed. Besides USB polling, we find a number of other
low-frequency processes that exhibit similar characteristics.

We propose a dual clock model that captures this scenario in
which two clocks are compared through a single time source.
In the dual clock model, a reference clock measures the times
at which a relatively slower subject clock ticks. Robust device
fingerprints are formed from the instantaneous phase of the
subject clock, which reflects the precise time at which the ticks
occur relative to the reference. The instantaneous phase seems
to be both device and software dependent, largely capturing
the complete hardware+software stack on a device.

Our approach consists of using estimates from the dual
clock model to form a phase image from the peripheral
timestamps. We show that the phase image simultaneously
captures clock frequency, skew, drift, phase, and jitter (i.e.,
changes in instantaneous phase), all of which contribute to
the device fingerprint. Like face images, phase images are not
directly comparable. A convolutional neural network, FPNET,
embeds the images in a low dimensional feature space that
enables device identification and verification as well as system
profiling, for example predicting device model and OS family.

Unlike prior work ([7], [8], and [11]), fine grained clock
behavior is captured by our model. The dual clock model
allows clock properties (e.g., skew, drift, phase, jitter) to
be measured from a single time source as a result of the
various processes that handle peripheral input being driven
by independent timers. Instantaneous phase, rather than skew
in prior work, reveals idiosyncratic device behaviors in the
presence of low-frequency polling. This approach has wide
applicability: it requires only the ability to measure the time
of peripheral input events. This can be performed from within
a web browser using, e.g., the JavaScript Date API, as no
special permissions are required to register callbacks to DOM
events induced by keyboard, touchscreen, and mouse input.

Our method of fingerprinting scales up to many thousands
of devices. We validate the approach using a corpus with over
300M DOM events captured from over 228k Internet users in
the wild. Relatively unique device fingerprints are formed from
300 keystrokes (600 events), which take about two minutes to
capture. With 10k devices, rank-1 identification accuracy is
56.2%, and as population size scales up to 100k it drops to
just 29.7%. Combined with features that capture user behavior
from the same timestamps, rank-1 identification rates increase
to 84.6% and 63.1% for 10k and 100k devices, respectively.
A near perfect 1000-fold reduction in population size (98.2%
rank-100 accuracy with 100k devices) is achieved.

The main contributions of this paper include:

• The dual clock model, which enables comparison of two
different clocks through a single time source. The model
assumes a high resolution reference clock that reports the
times at which some lower frequency subject clock ticks.
We show that frequency, skew, drift, phase, and jitter can
all be measured within this model.

• The concept of a phase image that captures fine-grained
clock behaviors and enables device fingerprinting. The
phase image is formed by modular residues of the ob-
served timestamps. A method to calculate the modular
residue with minimal precision loss is introduced.

• FPNET, a convolutional neural network that embeds
the phase images in a low dimensional feature space
to extract device fingerprints. The model architecture
is inspired by face recognition systems but designed
specifically for phase images.

• Device fingerprinting results on a large dataset contain-
ing 228k desktop and mobile devices observed in the
wild. User+device pairing is performed by combining
the device fingerprints with features that capture user
behavior. The device and user fingerprints are shown to
be independent and significantly increase identification
accuracy when combined.

Section II provides background on processing peripheral input
and related work; Section III defines the dual clock model;
Section IV examines the presence of periodic behavior in
a large dataset; Section V describes device fingerprinting
methodology; Section VI contains experimental results; Sec-
tions VII and VIII discuss results and conclude, respectively.

USB polling

Keyboard circuit
closes opens

DOM keydown

Date.now()

DOM keyup

Subject
clock tick

Reference
clock tick

ṫ 1 ṫ 2

t 1
S t 2

S

t 1
R t 2

R

Fig. 1. Time quantization of DOM keydown and keyup events measured
in a web browser using the JavaScript Date API. Gray arrows indicate when
the events are sensed by the keyboard; purple arrows indicate times at which
USB polls return event data; green arrows indicate the times reported by
Date.now() inside callbacks registered to the events.

II. BACKGROUND AND RELATED WORK

A. Input event processing

Document object model (DOM) events form the basis
of interactive and dynamic web pages. User input events
(keydown, keyup, mousemove, etc.) typically originate
in a peripheral device attached to the host. In this section,
we review the main components responsible for processing
peripheral input on personal computers, including desktop,
laptop, and mobile devices. These include: the peripheral
itself (e.g., keyboard) that polls a sensor for physical changes;
the communication protocol between the peripheral and the
host; the OS scheduler; and the browser event loop. Each
component introduces a delay to the event and in many cases
exhibits periodic behavior driven by some independent clock
running at a lower frequency than the browser timestamps.
This effectively quantizes the event timestamps as measured
in the web browser. This model is shown in Figure 1.

1) Sensor polling: A keydown event begins with the
user physically closing a circuit on the keyboard. Circuits
are arranged in a crossbar switch called a matrix, and the
keyboard microcontroller periodically scans the matrix by
pulsing each column. Matrix scanning occurs at 100-200Hz
on most keyboards [12]. When a closed circuit is detected,
key debouncing is applied which consists of a short timeout
(~5ms) to avoid spurious keystrokes as the switch contacts
bounce open and closed [13]. Both debouncing and matrix
scanning limit the rate at which keyboard events can occur.

Text entry on touchscreen devices, despite implementing
the keyboard in software rather than hardware, also perform
polling to detect keydown and keyup events. The touch
sampling rate is the rate at which the touchscreen can sense
touch events. This is not to be confused with the screen refresh
rate, which may be different than the touch sampling rate. The
latter ranges from 60Hz to 240Hz on newer devices [14].

2) USB and PS/2: The Universal Serial Bus (USB) standard
is the most widely used protocol to connect a human input de-
vice (HID), such as mouse or keyboard, to a host [15]. The vast
majority of USB keyboards and mice are low-speed devices
(USB 1.1) and communicate via interrupt transfers [16]. The
USB host controller regularly polls the HID for new events.

When a poll is received, the device will either respond with a
report containing new events or send a NAK packet indicating
nothing to report. Note that because the USB host controller
initiates endpoint polling, there is no load induced on the CPU
until an event is received. The USB specification states that
the maximum polling interval (set by the bInterval field
in the endpoint descriptor) for low-speed devices must be in
the range 10-255ms. However, it is common practice for low-
speed devices to use an 8ms polling interval [10].

Prior to USB, the Personal System/2 (PS/2) protocol was
widely used. Unlike USB, PS/2 delivers a hardware interrupt
directly to the host CPU [17]. Despite being interrupt based,
a sample rate must be set on the PS/2 device itself [18]. This
ranges from 10-200Hz, such that the device will send no more
than 200 events per second to the host. Once received, the
interrupt must be handled by the host.

3) Process scheduling: An interrupt request (IRQ) signals
the presence of peripheral input to the CPU. The IRQ is
raised over a physical line connected to the programmable
interrupt controller (PIC). While some IRQ lines have fixed
designations (e.g., PS/2 keyboards connect to IRQ1), USB
keyboards send events to the USB host controller which
typically shares an IRQ line with other devices. What happens
after this depends on the OS process scheduling policy. Both
the scheduling algorithm and preemption policy can affect the
time at which the IRQ is handled.

On Linux, there are three main modes of scheduling:
periodic, dynamic, and adaptive [19]. In periodic mode, the
scheduler interrupts the running process to decide on context
switches at a fixed rate specified by the OS clock tick.
More common on personal computing devices, dynamic mode
employs a periodic strategy under high load and omits schedul-
ing interrupts when the system is idle. This reduces power
consumption on mobile devices which may spend a significant
amount of time in an idle state. In adaptive mode, scheduling
interrupts are omitted if there is only one runnable task, which
may be appropriate for systems with real-time constraints.

Process scheduling occurs similarly with other OS families.
On Windows, time is sliced into quantums. One quantum is
the amount of time a thread typically runs for, ranging from
10-15ms [20]. Earlier versions of Windows implemented a
characteristic 64Hz interrupt timer (15.625ms quantum) [21].

4) Browser event loop: The OS kernel notifies the browser
of user input through a callback, after which the browser
queues the event and invokes the appropriate callbacks within
the web page. HTML specification conforming browsers ad-
vance state in discrete frames, following an event loop respon-
sible for handling DOM callbacks, rendering, and updating the
DOM [22]. Once the browser has received notification of the
event from the OS, it is placed in the event queue. The HTML
specification does not mandate a particular speed at which the
event loop executes. Browsers may try to maintain a 60Hz
event loop, synced with screen refresh rate, or scale this up or
down depending on hardware capability and system resources.
If the loop slows beyond the allotted time, frames are dropped
altogether. This is referred to as jank [23].

B. Related work
1) Device and browser fingerprinting: A device fingerprint

is comprised of hardware and software characteristics that
enable device identification [5], tracking users [24], authen-
tication [25], and Internet measurement applications such as
alias resolution, i.e., associating multiple IP addresses to a
single physical device [26]. Device fingerprinting techniques
vary by which sensor or software system is measured, ranging
from timestamps and sensors to browser version information.

Closely related to our work is that of Kohno et al. [7],
which demonstrated that a physical device could be remotely
identified based on TCP timestamps (enabled when the TCP
Timestamps option is set), as well as ICMP timestamp replies.
An on-path observer calculates the offset between TCP times-
tamps and a reference clock controlled by the observer. Over
time, this offset may grow or shrink, and the clock skew is
rate at which the timestamps from each source diverge. This
phenomenon is well documented, as the network time protocol
(NTP) specifically aims to synchronize the time of networked
machines by accounting for differences in skew [27]. Clock
skew measured through TCP timestamps may be relatively
unique to a physical device depending on the victim’s OS and
whether system time is NTP synchronized.

Taking this concept further, clock drift refers to the change
in clock skew (i.e., frequency offset) over time. Crystal oscil-
lator circuits may speed up or slow down based on ambient
temperature. Thus, heat dissipation from the CPU under high
load can result in clock drift. This can allow a location-hidden
service, e.g., over Tor, to be resolved to the same physical
machine that hosts a publicly accessible IP address [8]. An
adversary may induce a high CPU load on the victim by
repeatedly accessing resources hosted by the hidden server
and simultaneously observe clock drift through a public IP
address assigned to the same machine.

Our work differs from [7] and [8] in that timestamps are
acquired within a web browser rather than remotely. This
threat model aligns with recent work on browser fingerprinting
in which device-specific hardware and software attributes are
measured within a web browser to provide the means for
stateless tracking compared to, e.g., cookies [1]. The browser’s
User-Agent string, screen resolution, and installed fonts, to
name a few, all provide some entropy which may contribute
to a relatively unique identifier.

Hardware features specifically can enable cross-browser
fingerprinting, for example pixel-level differences based on
GPU-specific antialiasing effects [28]. Repeated function ex-
ecution time is also relatively unique due to performance
variability across machines [9]. More recently, high-entropy
mobile device fingerprinting techniques have been developed
based on accelerometer and magnetometer readings [29], [5].
These sensors must be calibrated due to manufacturing im-
perfections, and the calibration settings are unique per device.
Our approach departs from these techniques in that no special
sensors or JavaScript APIs are utilized.

2) Human computer interaction: The precise timing of
user input has been extensively studied in human-computer

interaction (HCI), though from a different perspective than our
work. Input latency, or lag, is the time delay from physical
interaction to a change in the system state, e.g., pressing a
key and then seeing a character appear on screen. Latency
is a critical factor that can affect human task performance
measured by the amount of effort or time a computing task
takes [30]. Peripheral latency has been well documented [12],
and HCI designers often strive for low-latency systems [31].

Recent work has noted stark differences in latency among
USB-connected keyboards and mice [10]. Because of the
various polling processes described in Section II-A, input
latency distributions are often multimodal and not properly
summarized by aggregate statistics such as mean and standard
deviation. The USB polling rate largely determines input la-
tency, although the ways in which a low-speed device (125Hz)
adapts to high speed polling (1000Hz) can differ dramatically.
This is significant in the HCI literature because input latency
can skew the results of psychological studies that measure
minuscule differences in response time [32].

The measurement of latency requires a closed-loop setup,
e.g., automating mouse input and detecting when the pointer
moves on screen. Although device fingerprinting might be fea-
sible through latency measurements, this setup does not scale
well. Our approach is partly inspired by the work of Wimmer
et al. [10] but considers only timestamps measured on the host
rather than peripheral-to-host latency measurements.

In addition to HCI, peripheral input is of interest for
biometric applications. Differences in the way people type or
move a mouse cursor can form the basis of user authentication,
such as a second factor during password entry [33]. Research
in this area measures idiosyncratic user behaviors for person
recognition, and includes keyboard, mouse, and touchscreen
input [34], [35]. This capability is a privacy concern as well,
noting that user profiling (e.g., predicting age and gender) can
be performed from mouse pointer motion alone [36].

Recently, keystroke biometrics have shown promise as a
means of multi-factor authentication when scaled up to thou-
sands of users [37]. TypeNet is a recurrent neural network
(RNN) trained with triplet loss using a large keystroke dataset.
The model embeds a sequence of keystroke timings in a low-
dimensional feature space and achieves user verification error
rates that plateau at around 2% with 50-keystroke samples
and a population size up to 100k users. Our work draws
some inspiration from Acien et al. [37]; we show how device
behavior can be extracted from the same data.

Device-specific behaviors in keyboard event times have
previously been observed, with [38] and [39] noting device
effects on event timing as a limitation to keystroke biometrics.
In [39], timing artifacts resulting from USB polling were found
to significantly alter user behavior fingerprints. We propose
that device-specific behaviors could actually be leveraged to
improve keystroke biometric systems and show that more
discriminatory power is achieved by pairing features that
measure both device and user behavior.

III. DUAL CLOCK MODEL

We introduce the dual clock model and estimation tech-
niques in this section, borrowing some terminology from [7]
(based on the NTP standard), [40], and [41] (see Appendix A
for a summary of notation). Our model departs from prior
work that fingerprints devices based skew and drift (e.g., [8],
[7], [11], and [42]) in two important ways: first, we assume
that only a single time source is available which contains an
implicit reference; second, we show that temporal dynamics
beyond skew and drift can form the basis of device finger-
printing. Specifically, we estimate the instantaneous phase of
a low frequency clock measured at irregular intervals.

A. Overview

The dual clock model contains a reference clock CR that
reports the time at which some lower frequency subject clock
CS ticks, exemplified in Figure 1. The reference clock emits
measurements at irregular times driven by some external event
source, e.g., input to a keyboard or other peripheral device.
Before reaching the reference clock, events pass through a
low-frequency polling process which acts as a buffer. As a
result, timestamps measured by the reference clock are closely
aligned to the subject clock ticks.

Let ṫi be the time of event i which occurs as soon as there
is a measurable state change in the peripheral device (e.g., a
keyboard circuit closes), and let tRi be the observed timestamp
of the ith event as measured by the reference clock. The event
times ṫi are not observed. Because of event handling, which
at a minimum includes the physical transfer of an event from
peripheral to host, tRi > ṫi.

Clock resolution is the granularity with which time ad-
vances, i.e., the period between ticks. We denote the period of
CS by T S (alternatively CS has frequency fS = 1

T S). Likewise,
CR has period TR and frequency fR = 1

T R . Driven by the event
source, the subject clock advances in discrete ticks,

kSi =

⌈
ṫi
T S

⌉
(1)

where kSi ∈ N (i.e., kSi is a natural number) and i ∈
{1, . . . , N}. Event times of the subject clock are given by

tSi = φi + kSi T
S (2)

where φi ∈ [0, T S) is the instantaneous phase of CS. Reference
clock ticks are given by

kRi =

⌈
tSi
TR

⌉
(3)

and the timestamps observed at the reference clock CR have
the form

tRi = kRi T
R (4)

where TR is small and thus time quantization performed by the
reference clock is minimal. The tSi are bounded by reference
clock ticks, tRi − TR < tSi ≤ tRi , and tRi → tSi as fR → inf .
We assume that TR is small enough such that tRi ≈ tSi .

The low resolution of the subject clock has a quantization
effect on the observed timestamps tRi . That is, the intervals
τi = tRi − tRi−1 between timestamps measured at the reference
clock are closely aligned to some multiple of the subject clock
period T S,

τi =
(
kSi − kSi−1

)
T S + δi (5)

where δi = φi − φi−1 and i ≥ 2.
The dual clock model applies to peripheral timings. DOM

input events can typically be measured with at least millisec-
ond resolution in a web browser (i.e., fR = 1kHz) and must
pass through several lower-frequency processes, such as key-
board matrix scanning (100-200Hz), USB polling (125Hz), OS
scheduling (64-100Hz), and the browser event loop (60Hz).
Properties of the subject clock can be estimated through the
timestamps provided by the reference clock. These include the
subject clock’s resolution (i.e., frequency), skew with respect
to a known standard, drift, phase, and instantaneous phase.

B. Estimating frequency

Estimating the subject clock’s frequency can reveal which
process or device class CS belongs to. For example, 125Hz is a
hallmark of USB polling while 60Hz indicates a browser event
loop or touch sampling rate. We estimate fS through spectral
analysis of the observed times tRi . Because the tRi are point
events, the spectral density is computed directly, i.e., without
performing a fast Fourier transform (FFT), as

P (f) =
1

N

∣∣∣∣∣
N∑
i=1

e2πjftRi

∣∣∣∣∣
2

(6)

where j =
√
−1. Peaks in P (f) for which f ≤ fR

2
indicate the presence of periodic behavior. Note that in general
Equation 6 requires f to be very close to fS in order to
detect a peak; however, with a 1kHz reference clock (i.e.,
millisecond timestamps), greater tolerance is allowed and the
spectral density estimates are “binned” as described in [41].
For additional background, see [41] and [43].

We estimate the frequency of the subject clock by

f̂S = arg max
f

P (f) (7)

which corresponds to the dominant frequency in the peri-
odogram. This generally requires a fine search over f , and we
form the estimate f̂S in a two step process to reduce computa-
tion. First, f̂S is estimated using a coarse grid of integer-valued
frequencies, f ∈ {1, . . . , 500}. This reveals which process
or device class the subject clock belongs to since P (f) will
exhibit peaks near choices of f that correspond to the subject
clock’s resolution. This estimate is then refined through a fine
grid search centered around the peak (see Section IV-A).

Note that the reference clock frequency places an upper
bound on the measurable subject clock frequency due to the
Nyquist theorem, i.e., it’s necessary that fR � fS. This
suggests an approach to mitigate fingerprinting, and web
browsers have in fact adjusted the way time is reported through

various APIs to limit fingerprinting [44] and timing attacks
[45], in some cases by introducing noise to CR. We test
the effectiveness of these mitigations in Section VII-E by
comparing device fingerprints before and after Spectre patches
were applied.

C. Estimating skew

Clock skew is the rate of divergence between two clocks,
thought to be relatively unique based on device type and
manufacturing processes. However, unlike [7] and [40], we
assume that only a single time source is provided. Instead,
we measure skew between CS and hypothetical clock Ċ
which represents a specification-conforming subject clock with
frequency ḟ (period Ṫ = 1

ḟ
) based on known standards.

The choice of ḟ is based on f̂S being close to a known
standard. For example, an estimated frequency f̂S = 125.1Hz
implies USB polling which should occur at 125Hz, thus the
intended frequency would be ḟ = 125Hz. Clock skew in this
case quantifies how quickly the subject clock diverges from its
intended frequency as measured by the reference clock: f̂S is
measured in terms of CR. That is, the unit of f̂S is cycles per
second as measured by CR, and an estimated f̂S = 125.1Hz
indicates only that CS runs fast compared to CR when in fact it
could be CR running slow. However, assuming CR comes from
an NTP adjusted source such as Date.now(), the former
seems more probable.

We first estimate ticks of the subject clock using

k̂Si =

⌊
tRi

T̂ S

⌋
(8)

where T̂ S = 1
f̂S

. Note that Equation 8 contains a floor function
rather than ceiling because tSi is bounded above by tRi , i.e.,
ṫi < tSi ≤ tRi . Similarly, the intended subject clock ticks are
given by k̇i =

⌊
tRi
Ṫ

⌋
under the assumption that CS should be

running at frequency ḟ . The skew of CS is the first derivative
of the offset between CS and Ċ, given by the slope of the line
fit to points

{(
tRi ,∆ki

)
: 0 ≤ i ≤ N

}
where ∆ki = k̇i − k̂Si .

We can also simply estimate skew as the offset between actual
and intended frequencies,

∆f = ḟ − f̂S (9)

which is sometimes expressed in units of parts per million
(ppm), i.e., the microseconds per second at which CS diverges
from Ċ, given by s = 106

(
ḟ−f̂S

ḟ

)
.

D. Estimating instantaneous phase

Jitter commonly refers to variations in periodic behavior,
which may be measured in the time or frequency domain [46].
This phenomenon is common in oscillating circuits where ther-
mal noise and coupling with nearby circuits may cause uncer-
tainty in the timing of clock edges [47]. The measurement and
mitigation of jitter is also relevant in operating systems since
timing variations may cause uncertainty in process scheduling
which may delay tasks [48]. This is of particular interest

TABLE I
DATASET SUMMARY. COMBINED=DESKTOP+MOBILE DATASETS.

Desktop Mobile Combined
Devices 151,482 76,768 228,250
Events 183,057,600 118,734,600 301,792,200

Typing speed 5.95 keys/sec 4.78 keys/sec 5.49 keys/sec

in real-time systems [49] and high performance computing
applications [50].

We measure jitter in the time domain, i.e., timing jitter,
which is captured by changes in the instantaneous phase.
Considering DOM event timings, congestion along one of the
processes described in Section II-A may cause the subject
clock tick to be slightly delayed, thereby extending the interval
between ticks. This would result in a change to the instanta-
neous phase, which forms the basis of device fingerprinting in
our work.

We estimate instantaneous phase of the subject clock by

φi =

(
T S

2π

)
Arg

(
e2πj

tRi
TS

)
(10)

where 0 ≤ φi < T S and Arg is the principal value complex
argument function with range [0, 2π). We denote the instanta-
neous phase sequence as φ = [φi : i ∈ {1, . . . , N}] where N
is the number of events observed.

IV. A FIRST LOOK AT DUAL CLOCKS IN THE WILD

We examine the presence of periodic behavior in two
large public datasets collected on a commercial platform that
provides web-based tools to evaluate typing skill [51], [52].
For several months, participants from around the world were
presented with a series of English sentences containing at least
3 words and up to 70 characters. Participants were instructed
to transcribe each sentence as quickly as possible into a
textarea that appeared under the sentence. Timestamps
were measured by Date.now() in callbacks registered to
DOM keydown and keyup events. Sessions were tracked
with browser cookies; thus, each session corresponds to the
same device (unless the cookie was cleared) and the same
user (unless the device was borrowed by another user).

We consider the timing of individual events rather than
keystrokes. Each keystroke typically generates 2 events
(keydown and keyup) except in some cases where a vir-
tual keyboard is used: with swipe text entry, a sequence of
keydown events may be generated despite individual keys
not being pressed. We discard sessions for which less than
1200 events were observed, later forming 600-event samples
for device fingerprinting. Table I summarizes the data utilized
in our analysis. After forming two 600-event samples for each
device, the desktop dataset (from [51]) contains 183M events
(~92M keystrokes) from 151k users and includes only desktop
and laptop devices as identified through the User-Agent string.
The mobile dataset (from [52]) contains 118M events (~59M
keystrokes) from 76k users on mobile and touchscreen devices.
Note that this is larger than what was originally reported

0 100 200 300 400 500
Frequency (Hz)

PS
D

(a)125 Hz

0 100 200 300 400 500
Frequency (Hz)

PS
D

(b)

125 Hz
250 Hz

375 Hz

0 100 200 300 400 500
Frequency (Hz)

PS
D

(c)60 Hz

125 Hz

0 100 200 300 400 500
Frequency (Hz)

PS
D

(d)

Fig. 2. Examples of four PSD patterns observed: (a) peak at fundamental,
(b) peak at harmonic, (c) peaks within different harmonic series, (d) no peak.

in [52] because data collection continued beyond the date
of publication. The combined dataset combines desktop and
mobile datasets.

A. Spectral analysis

We first examine power spectral density (PSD) patterns
exhibited by peripheral timestamps. The PSD can reveal
the presence and source of periodic behavior and allows a
refined estimate of clock skew. We calculate the PSD using
Equation 6 with integer-valued frequencies up to 500Hz, i.e.,
f ∈ {1, . . . , 500}, for each device in the combined dataset.

Peaks in the PSD indicate the presence of periodic behavior.
The dominant frequency is given by the highest peak, and the
fundamental frequency is the lowest frequency that exhibits a
peak. A harmonic is an integer multiple of the fundamental
frequency. On most devices, the dominant frequency is the
same as the fundamental, but we observed many devices in
which the fundamental frequency carried less energy than
other harmonics in the same series. Additionally, some devices
exhibit no peak at all, and other devices contain peaks within
different harmonic series, e.g., 64Hz and 125Hz which may
occur when events pass through both USB polling and OS
scheduling. These four scenarios are shown in Figure 2.

Fundamental frequencies are determined for each sample
to measure how many devices exhibit periodic behavior. This
allows categorizing a device by its fundamental frequency (if
any) which may be attributed to a common source, such as
64Hz being indicative of the Windows OS family. Noting the
observations above, fundamental frequency detection is per-
formed by first detecting peaks and then removing harmonics
to retain only the fundamental frequency within each harmonic
series detected. Threshold-based peak detection is performed:
peaks are given by frequencies with at least 50% more power
than the 95th percentile. These values were chosen empirically
to agree with peak detection performed by visual inspection
of several hundred samples.

TABLE II
TOP 10 FUNDAMENTAL FREQUENCIES IN EACH DATASET.

Desktop
Hz No. Devices % Dataset

125 60308 39.81
60 17045 11.25

250 5127 3.38
100 3534 2.33
300 3115 2.06
200 2353 1.55
400 2028 1.34
375 1987 1.31

64 1659 1.10
50 1482 0.98

Mobile
Hz No. Devices % Dataset

60 14746 19.21
100 2617 3.41
125 2138 2.79
120 1961 2.55

50 1435 1.87
200 1323 1.72
300 833 1.09
250 620 0.81
400 547 0.71
180 472 0.61

Table II summarizes the top 10 fundamental frequencies in
each dataset. The overwhelming majority of desktop devices
(nearly 40%) contain periodic behavior with a 125Hz funda-
mental frequency, suggesting the presence of a USB connected
keyboard. On the other hand, nearly 20% of mobile devices
have a 60Hz fundamental frequency, which may correspond to
either the browser event loop synced with screen refresh rate
or the touch sampling rate. A significant number of desktop
devices are also 60Hz, which is more likely the browser event
loop. In the following section we consider skew of the top
three frequencies among desktop (125Hz, 60Hz, 250Hz) and
mobile (60Hz, 100Hz, 125Hz) devices.

B. Information gained through clock skew

Clock skew has previously been used to identify unique
devices on the Internet [7]. In this work, we consider precise
estimates of the subject clock frequency as a means to perform
device identification. This is done separately for each of the
top three dominant frequencies, where skew is given by the
difference between the estimated frequency f̂S and intended
frequency ḟ . We estimate frequency using Equation 7 by
performing a grid search in increments of 0.0005 Hz within
the range [ḟ − 1, ḟ + 1].

Figure 3 shows the clock frequency distributions of desktop
(125Hz, 60Hz) and mobile (60Hz, 100Hz) devices. We note
that the majority of both 60Hz and 125Hz desktop devices
run slightly fast, while most 60Hz mobile devices run slow.
In addition, the 125Hz desktop distribution appears trimodal,
suggesting that low-speed USB keyboards fall into three broad
categories of slow, normal, and fast.

To determine potential for device fingerprinting, we consider
mutual information (MI) between device ID and clock skew
(frequency offset). The events from each device are grouped
together forming samples of 600 events such that each de-
vice contains at least 2 samples and the events from each
sample do not cross sentence boundaries (the latter condition
ensures some separation between samples). We estimate MI
using the nearest-neighbor estimator described in [53] which
operates over continuous (clock skew) and discrete (device
ID) variables. The results are summarized in Table III which

59.990 59.995 60.000 60.005 60.010
Frequency (Hz)

De
ns

ity

60Hz Desktop Devices

124.990 124.995 125.000 125.005 125.010
Frequency (Hz)

De
ns

ity

125Hz Desktop Devices

59.990 59.995 60.000 60.005 60.010
Frequency (Hz)

De
ns

ity

60Hz Mobile Devices

99.990 99.995 100.000 100.005 100.010
Frequency (Hz)

De
ns

ity

100Hz Mobile Devices

Fig. 3. Clock skew estimates for desktop devices: 60Hz (top left), 125Hz
(top right); and mobile devices: 60Hz (bottom left), 100Hz (bottom right).

TABLE III
MUTUAL INFORMATION (BITS) BETWEEN SKEW AND DEVICE.

H=ENTROPY, MI=MUTUAL INFORMATION, NMI=NORMALIZED MI.

Desktop
Hz H MI NMI

125 15.90 2.77 0.17
60 14.12 2.04 0.14

250 12.66 2.22 0.18

Mobile
Hz H MI NMI

60 13.76 2.13 0.15
100 11.37 0.34 0.03
125 11.22 0.89 0.08

also shows the intrinsic entropy (H) and normalized mutual
information (NMI = MI/H) for each device class and each
dataset. While clock skew is indeed unique for some devices,
the NMI is relatively low overall.

C. Instantaneous phase

Our device fingerprinting approach centers on extracting
device-specific behaviors from the estimated instantaneous
phase sequence. Instantaneous phase exposes fine-grained
timing behavior, revealing precisely when the subject clock
ticks relative to the reference clock. To compare different
devices however, φ must be computed using the same period
Ṫ because, as described in the next section, the φ form a
congruence class modulo Ṫ .

To demonstrate some of the diversity in clock behaviors,
Figure 4 shows the instantaneous phase of six devices from
two different classes: 60Hz (top row, Ṫ = 1

60) and 125Hz
(bottom row, Ṫ = 1

125). Among the 60Hz devices, variations in
jitter are evident. Timing jitter is measured by the magnitude
of phase changes (|φi − φi−1|), which are generally greater
in Device B compared to Device A. The sawtooth pattern in
Device C suggests that the 60Hz clock is running slightly
fast, and indeed for this particular device the estimated subject
clock frequency is f̂S = 60.00125Hz.

We observed instantaneous phase to be especially diversified
among 125Hz devices. This may be attributed to the USB host
controller running off of an independent clock from system
time reported by Date.now(). The phase of Device D

0 20 40 60 80 100
Event

0

5

10

15
Ph

as
e

(m
s)

Device A

0 20 40 60 80 100
Event

0

5

10

15

Ph
as

e
(m

s)

Device B

0 20 40 60 80 100
Event

0

5

10

15

Ph
as

e
(m

s)

Device C

0 20 40 60 80 100
Event

0

2

4

6

8

Ph
as

e
(m

s)

Device D

0 20 40 60 80 100
Event

0

2

4

6

8

Ph
as

e
(m

s)

Device E

0 20 40 60 80 100
Event

0

2

4

6

8

Ph
as

e
(m

s)

Device F

Fig. 4. Instantaneous phase sequences for three different 60Hz devices (top) and three different 125Hz devices (bottom).

oscillates between two values while Device E exhibits a similar
pattern albeit with greater variation. Finally, the sawtooth
pattern in Device F is due to CS running slightly faster than
125Hz (f̂S = 125.04465Hz), similar to Device C.

V. DEVICE FINGERPRINTING METHODOLOGY

We form device fingerprints by first constructing a phase im-
age that contains modular residues (equivalent to instantaneous
phase) under many different hypothetical subject clocks. The
phase image captures a variety of clock behaviors, but like face
and actual fingerprint images they are not directly comparable.
We define a neural network, FPNET, that embeds the phase
images in a low-dimensional feature space. This approach is
inspired by face recognition systems such as FaceNet [54].
Classification tasks, including device identification and verifi-
cation, can then be performed with a simple Euclidean distance
metric in the feature space.

A. Phase images

Using complex argument identity Arg
(
zθ
)
≡ θ mod 2π,

where complex number z = rejθ and θ ∈ R, instantaneous
phase (Equation 10) can be rewritten as

φi ≡ tRi mod T S . (11)

This implies the φi form a congruence class modulo T S. Thus,
comparing two different instantaneous phase sequences (from
either the same or different device) requires that the same
period be used to estimate φi. However, it may generally be
the case that different T̂ S are estimated for different devices
or even different samples coming from the same device.

To overcome this issue, we can choose some Ṫ close to T S

and use this same modulus to calculate φṪi ≡ tRi mod Ṫ for
different samples. This places all φṪi in the same congruence
class, enabling samples from different devices to be compared.
However if Ṫ is not close to T S, phase wrapping in φṪ will
occur. An example of phase wrapping is shown in Figure 4
where Devices C and F both run slightly faster than the chosen

Ṫ . Points of phase wrapping are denoted specifically by the
ticks of CS and Ċ diverging, i.e., ∆ki either increases or
decreases. An aliasing effect in φṪ occurs when the rate of
phase wrapping exceeds the event rate, and if phase wrapping
occurs too often, aliasing prevents accurately measuring jitter
and other properties of CS. It is therefore necessary to choose
Ṫ close enough to T S such that a sufficient number of events
are observed between points of phase wrapping.

Choice of Ṫ depends partly on the inter-event times τ . Let
r = 1

〈τ〉 be the event rate. Note that r is both user dependent
(e.g., how fast someone types) and peripheral-dependent (e.g.,
sampling rate of the sensor). The expected number of events
between points of phase wrapping is given by n = r

|∆f | . That

is, n estimates the average length of unbroken segments in φṪ .
The segment length provides guidance on how close Ṫ should
be to T S, or alternatively, how large a frequency offset can be
tolerated in the instantaneous phase estimates. For example, to
achieve an expected segment length of 20 events with event
rate r = 10Hz, Ṫ should be chosen such that |∆f | ≤ 0.5Hz,
i.e., ḟ = 1

Ṫ
should be within 0.5Hz of fS.

Selecting Ṫ to compare φṪ from different devices may be
appropriate for samples within the same device class, i.e., two
devices with the same fundamental frequency. However, we
observed a variety of fundamental frequencies among desktop
and mobile devices (see Section IV-A). This motivates the
construction of a phase image, obtained by stacking many rows
of φṪ for various choices of Ṫ . Let φTm

i be the instantaneous
phase of event i determined with clock period Tm, where
i ∈ {1, . . . , N} and m ∈ {1, . . . ,M}. The phase image Φ
is structured as

Φ =


φT1

1 φT1
2 . . . φT1

N

φT2
1 φT2

2 . . . φT2

N
...

...
. . .

...
φTM

1 φTM
2 . . . φTM

N

 (12)

where rows of φTm are concatenated together forming an

M × N matrix. Since the same set of moduli are used
to calculate each image, the phase images from different
samples are comparable: each row corresponds to a particular
congruence class.

The choices of Tm should span all possible subject clock
frequencies that may appear in the device population. The
above criteria for choosing Ṫ based on event rate suggest that
the {T1, . . . , Tm} should be evenly spaced in the frequency
domain such that r

|fm−fS| ≥ n for at least one fm = 1
Tm

where
n is the desired segment length. The average event rate in
the combined dataset is about 10Hz (i.e., 5 keystrokes/second,
and each keystroke emits keydown and keyup events). With
a 10Hz event rate, setting fm+1 − fm = 1Hz (i.e., 1Hz
spacing between fm) ensures that

∣∣fm − fS∣∣ ≤ 0.5Hz, thus
the expected segment length is n = 20 events.

With small enough spacing between the fm, the phase image
simultaneously captures dominant frequency, skew, and drift,
in addition to jitter. To see this, consider the phase image of
a subject clock with frequency fS = 1

T S . The fundamental
frequency is given by fm closest to fS and will correspond
to the row in Φ that appears most regular. With no timing
jitter and Tm = T S, then φTm would remain constant; with
fm slightly less or greater than fS, the phase would gradually
change due to drift.

Likewise, skew of the subject clock can be estimated from
the phase image. Considering fm closest to fS, a refined
estimate of subject clock frequency (i.e., offset between fS and
fm) can be obtained from φTm . Let d be the slope of the line
formed by points {(ti, φTm

i) : ∆ki = 0}, i.e., points at which
actual and intended subject clock ticks are equal which occur
between discontinuities in φTm . Then f̂S is given by d

Tm
. A

more robust estimate of fS could be obtained by unwrapping
the instantaneous phases to remove discontinuities [55].

Figure 5 shows example phase images from four differ-
ent devices. The shape of each image is 481 × 600 × 1,
where dimensions correspond to 481 frequencies, 600 events,
and 1 channel. We consider only integer valued frequencies,
fm ∈ {20, . . . , 500} for several reasons. Timestamps were
obtained through Date.now() which provides a 1kHz ref-
erence clock, forcing the upper bound of 500Hz due to the
Nyquist Theorem. The lower bound of 20Hz was chosen to
avoid the measurement of user behavior, which occurs in the
range of 1-10Hz. Finally, spacing of 1Hz was chosen as this
provided adequate bounds on segment length given the average
event rates in both datasets, which is approximately 10Hz.
More importantly, integer-valued frequencies enable comput-
ing the phase image with primarily fixed point arithmetic.
We found that floating point precision loss due to rounding
errors significantly degraded the resulting device fingerprints.
See Appendix B for implementation details on calculating
instantaneous phase with minimal precision loss.

B. FPNET

Similar to face images and other high-dimensional data,
a method is needed to extract representative features from
the phase images. We define a convolutional neural network

(CNN), FPNET, for this purpose. The architecture of FPNET
was developed specifically for phase images using techniques
inspired by face recognition [54]. Acting as a feature extractor,
FPNET consists of a function f (Φ) that produces a compact
embedding x ∈ R128 (128-dimension vector) from phase
image Φ. The model is trained with triplet loss to produce
embeddings that can be used for a variety of device finger-
printing tasks, such as device identification and profiling.

Phase images differ from face and other natural images
in several ways. Most importantly, the axes of the phase
image have different units: rows correspond to the frequencies
used to calculate instantaneous phase, and columns correspond
to the event index. There is a natural ordering along both
dimensions, with time progressing along the columns and
frequency increasing along the rows. We considered several
different network architectures that have worked well for face
and natural images (e.g., [56]) and ultimately converged to
the structure in Appendix C (Table VII). The design choices
in FPNET were motivated by several factors.

One of the key strengths of convolutional networks is loca-
tion invariance, a result of having locally connected regions in
the convolutional layers. With phase images however, each row
corresponds to a difference congruence class. Characteristic
trends may occur along different rows, and these trends carry
a location dependence within the image. That is, depending on
the device class, one or more rows in the image may appear
“regular” (e.g., see Figure 4), the location of which depends on
the fundamental frequency. For this reason, FPNET is struc-
tured to achieve location sensitivity along rows and location
invariance along columns with several defining characteristics:
• 1 × 2 pooling layers only. By pooling only along the

time axis, location sensitivity along the frequency axis
is achieved. This creates a rectangular receptive field at
each layer, which widens over events and remains narrow
over frequency.

• 1× 3 convolutional layers followed by 3× 3 convolution
layers. The 1×3 kernels force early layers in the network
to focus on sequential patterns. It is not until halfway
through the network that 3× 3 kernels begin to consider
phase from neighboring rows.

With this structure, receptive fields grow linearly along the
frequency dimension and exponentially along the event di-
mension, eventually spanning the image width.

C. Model training

FPNET is trained using triplet loss [57], a metric learning
technique in which triplets of images are presented to the
network and the distances between images are ranked. During
each iteration of training, the model is presented with three
examples: an anchor, a positive example, and a negative
example. The positive example shares the same class as the
anchor and the negative example comes from a different class.
The triplet loss function is given by

L (ΦA,ΦP,ΦN) = max {d(ΦA,ΦP)− d(ΦA,ΦN) + α, 0}
(13)

0 100 200 300 400 500 600
Event

25

75

125

175

225

275

325

375

425

475
Fr

eq
ue

nc
y

(H
z)

0 100 200 300 400 500 600
Event

25

75

125

175

225

275

325

375

425

475

Fr
eq

ue
nc

y
(H

z)

0 100 200 300 400 500 600
Event

25

75

125

175

225

275

325

375

425

475

Fr
eq

ue
nc

y
(H

z)

0 100 200 300 400 500 600
Event

25

75

125

175

225

275

325

375

425

475

Fr
eq

ue
nc

y
(H

z)

Fig. 5. Phase images from four different devices with dominant frequencies (left to right): 60Hz, 64Hz, 100Hz, 125Hz. Zoomed insets are centered on the
dominant frequency of each device showing regular patterns in different parts of the image. Pixel intensity represents instantaneous phase along each row.

where α is a margin and function d(·) is the Euclidean distance
between embedded images,

d(Φi,Φj) = ‖f(Φi)− f(Φj)‖2 . (14)

In this way, the model learns to rank distances. Within-class
distances are forced to be smaller than the margin α, and
between-class distances are forced to be larger than the margin.
We set the margin α = 1 for model training.

In addition to triplet loss, we use an online triplet mining
strategy [54]. Within each batch the losses from only semi-
hard triplets are considered. Semi-hard triplets are those for
which the negative example is further from the anchor than
the positive but still within the margin α. That is, only triplets
for which d(ΦA,ΦP) < d(ΦA,ΦN) < d(ΦA,ΦP) + α are
considered within each batch. We found semi-hard triplet
mining to significantly improve separation between classes.

The presence of semi-hard triplets within each batch de-
pends on there being enough triplets to choose from. Im-
portantly, we form batches such that each batch contains all
the samples from a particular device, i.e., classes rather than
samples are shuffled between epochs. The batch size was set
to 256, which we balanced with model size to fit in GPU
memory. With two samples per device for training, this ensures
that each batch contains 128 devices.

VI. EXPERIMENTAL RESULTS

The embedded phase images form the basis of device finger-
printing in which Euclidean distances between embeddings are
considered. We evaluate two different fingerprinting scenarios:
device identification/verification as a supervised learning prob-
lem; and user+device pairing, which combines phase image
embeddings with another model that captures user, rather than
device, behavior. From the combined dataset, 128,250 devices
are used to train FPNET after which fingerprinting results are
obtained on the remaining 100k devices (approximately 60%
of the combined dataset). In this way, FPNET need only be
trained once as the devices in training and evaluation sets are
mutually exclusive.

A. Device identification and verification

The goal of device identification is to match a query to the
correct template among a population of many devices. In the

experiments below, the population consists of a single phase
image from each device, i.e., device identification is performed
with one-shot learning and a 1-nearest-neighbor classifier.

In supervised learning tasks with thousands of unique
classes, it is common to consider rank-n classification accuracy
for n > 1 in addition to rank-1 accuracy. With rank-n accuracy,
a query sample is correctly labeled if the true device template
is among the closest n templates to the query. We evaluate
device identification using rank-1, rank-10, and rank-100 ac-
curacy with the population size reaching 100k devices. For
perspective, the ImageNet benchmark contains 1000 classes
and it is common practice to report both rank-1 and rank-5
accuracy [58].

Device verification is a binary classification problem in
which one must decide whether two different phase images
belong to the same device. We compare the distance between
two embedded vectors to a threshold: if the distance is below
the threshold, then the devices are matched; otherwise they are
labeled as a non-match. We evaluate verification performance
by two different metrics. The equal error rate (EER) is the
point on the receiver operating characteristic (ROC) curve
where false positive rate (FPR) and false negative rate (FNR)
are equal. We also consider the true positive rate (TPR) at
0.1% FNR (denoted as TPR@10−3), which is the same metric
reported by FaceNet [54].

Identification and verification performance metrics are sum-
marized in Table IV. With 10k devices, FPNET achieves a
56.17% rank-1 accuracy and 87.74% TPR@10−3. For compar-
ison, FaceNet achieves 99.63% TPR@10−3 with a population
size of about 5.7k users. FPNET rank-1 accuracy drops to only
29.7% with 100k devices, while TPR@10−3 remains relatively
unchanged. This is consistent with prior work using triplet
networks for verification that found the EER to plateau rather
than decrease as more classes are added [37].

B. User+Device pairing

Recent work has shown that keystroke dynamics enables
user verification to be performed at a large scale [37]. TypeNet
is a recurrent architecture that embeds 5-dimensional keystroke
sequences (4 timing features and the JavaScript event keycode)
in a low-dimensional feature space. The model was trained
with triplet loss, albeit without triplet mining, and achieved a

TABLE IV
SUMMARY OF IDENTIFICATION AND VERIFICATION ACCURACY FOR EACH DATASET AND FEATURE TYPE.

Population Size Dataset Features
Identification Accuracy (%) Verification Accuracy (%)

Rank-1 Rank-10 Rank-100 TPR@10−3 EER

10k

Desktop
Device only 53.52 84.47 96.10 82.80 1.99
User+Device 85.17 98.39 99.77 96.33 0.47

Mobile
Device only 38.74 77.07 96.27 76.00 1.84
User+Device 68.61 93.18 98.65 93.36 1.17

Combined
Device only 56.17 88.34 97.70 87.74 1.50
User+Device 84.75 98.07 99.65 97.31 0.54

100k Combined
Device only 29.70 62.89 88.43 87.35 1.50
User+Device 63.14 90.14 98.21 97.36 0.51

0.2 0.4 0.6 0.8 1.0
Population size (k) 1e5

0

20

40

60

80

100

Ra
nk

-1
 A

CC
 (%

)

User+device
Device only

0.2 0.4 0.6 0.8 1.0
Population size (k) 1e5

0

20

40

60

80

100

TP
R@

10
3 (

%
)

User+device
Device only

Fig. 6. Identification (left) and verification (right) accuracy vs pop. size.

2.2% EER with samples containing up to 50 keystrokes and
a population size of 100k users.

We consider pairing user and device behavior by combining
the FPNET embedded vectors with another model inspired
by TypeNet. Summarized in Appendix C, TAUNET (Time
Interval Network) is a RNN that predicts an embedding vector
from the sequence of inter-event times, τ = [τi:{2, . . . , 600}]
which contains 599 time intervals between 600 events. Note
that unlike TypeNet, TauNet does not require a keycode,
operating only on the time interval between events. Thus, it
could be used for other DOM event types besides keydown
and keyup. TAUNET is trained separately from FPNET but
in a similar regime, using triplet loss with semi-hard online
mining. User+device pairing is performed by concatenating the
FPNET and TAUNET embeddings together, forming a single
256 element feature vector which is then L2 normalized.

Device identification and verification is performed similar
to the previous section: one-shot learning with a 1-nearest-
neighbor classifier for identification. The results are summa-
rized in Table IV, showing performance metrics separately for
phase image (device only) and concatenated (user+device) fea-
tures in addition to device type (desktop, mobile, combined).
One of the main results we’d like to highlight is that rank-1
user+device identification can be performed at 63.14% accu-
racy with a population size of 100k. The significant increase in
performance with concatenated features suggests that FPNET
and TAUNET each capture very different aspects of the event
timestamps. We discuss and verify this in Section VII-A.

The scaling of accuracy with population size is of interest
to better understand the asymptotic behavior of device fin-
gerprinting. Rank-1 identification accuracy and TPR@10−3

are calculated for population sizes ranging from 10k to 100k
in the combined dataset. Figure 6 compares the device only
and user+device features. The rank-1 accuracy of modern
face recognition systems decreases according to a power law
with population size [59], and we note a similar trend here.
Examining asymptotic behavior in depth, which is necessary
to understand how this kind of system might perform in the
wild, remains an item for future work.

VII. DISCUSSION

A. User vs. device behavior

With timestamps obtained from user input (e.g., typing on
keyboard or moving a mouse), there is an opportunity to
measure both user and device behavior. This was performed
in Section VI-B where we combined phase image embeddings
with time interval embeddings to produce a concatenated
user+device fingerprint. Significantly higher identification ac-
curacy is achieved with the combined fingerprint. It would
be ideal, however, to control for both the user and device
during data collection in order to measure each fingerprint in
isolation of the other. This is an issue that has actually plagued
keystroke biometrics research in which device-specific effects
can distort measured typing characteristics [39].

We perform a Mantel test to determine whether user and
device features are independent of each other, considering the
correlation between phase image embedding distances (pre-
sumed device behavior) and time interval embedding distances
(presumed user behavior). The Mantel test is frequently used
in ecology to, e.g., determine whether genetic distances are
correlated with geographic distances [60].

The test works by repeatedly permuting the rows and
columns of one distance matrix and taking Spearman’s rank
correlation coefficient ρ (or another correlation metric) be-
tween the two sets of n(n − 1)/2 unique distances. If the
distances are correlated, the test statistic of the permuted
distances should be lower than the original distances. The
significance p of the test is given by the proportion of
permutations that have a higher correlation than the original.
The results of the Mantel test indicate negligible correlation for
both desktop (ρ = 0.038, p = 0.001) and mobile (ρ = 0.181,
p = 0.001) devices, supporting feature independence.

0 50 100 150 200 250 300 350 400
Time between samples (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Em

be
dd

in
g

di
st

an
ce

r = 0.003Desktop

0 200 400 600 800 1000 1200
Time between samples (s)

0.25

0.50

0.75

1.00

1.25

1.50

Em
be

dd
in

g
di

st
an

ce

r = 0.008Mobile

Fig. 7. Fingerprint permanence. Embedding distance vs time between samples
for desktop (left) and mobile (right) devices. r=Pearson correlation coefficient.

B. Fingerprint permanence

Reliably identifying devices over extended periods of time
requires the device fingerprint to have permanence such that
the fingerprint is invariant to environmental and operating con-
ditions [61]. Prior work has examined the evolution of browser
fingerprints over time and found that as users make software
upgrades, connect new peripherals, and adjust browser set-
tings, the browser fingerprint can significantly change [62].

Like browser fingerprints, peripheral timestamp fingerprints
may evolve over time. Properties of the phase image depend
largely on peripheral hardware, OS family, and browser. As
these elements change, periodic behavior of the device might
also change. Similarly, environmental conditions could affect
DOM event timings, for example as crystal oscillators speed
up or slow down in response to temperature changes [8].

A longitudinal study to evaluate the invariance of phase
image embeddings with respect to environmental conditions
remains an item for future work. Instead through a preliminary
investigation, we quantify the extent to which phase images
change over the relatively short observation periods observed.
The relationship between embedding distance and sample
collection period is shown in Figure 7. The lack of any
significant correlation indicates that embedding distance is
consistent over the time periods observed, which ranged from
about 1-5mins on desktop and 1-20mins on mobile devices.

C. System profiling

We observed evidence of device clustering, noting at a
minimum that many devices share the same fundamental
frequency (see Section IV). The presence of clusters indicates
that device fingerprints may be partially attributed to software
or hardware properties that are common to a group of devices,
including OS family or device brand, and suggests a potential
for system profiling from DOM event timings.

The goal of system profiling is to predict host attributes
of some previously unseen device [1]. Compared to device
fingerprinting, which leverages the uniqueness of a device
to track users, system profiling reveals private attributes of
the host due to similarities with other known hosts. Doing
so enables an attacker to target exploits that may depend on
browser family, version, or device architecture [63]. Profiling
from peripheral timestamps is possible due to platform-specific
(rather than device-specific) behaviors in the event processing
pipeline. For example, touch sampling rate may be unique to

TABLE V
DEVICE PROFILING ACCURACY. BASELINE=MODE PREDICTION.

Attribute Num. Unique Baseline (%) Profiling (%)

Desktop vs. mobile 2 70.0 98.7
OS family 2 58.0 96.5

Browser family 13 41.9 74.8
Device brand 15 47.9 80.8

a particular device model; process scheduling is based on the
particular OS family; and browser families may use different
strategies to optimize the event loop.

To evaluate the potential for system profiling, the embedded
phase images are used to predict several host attributes parsed
from the User-Agent (UA) string including: device type (desk-
top vs mobile), OS family, browser family, and device brand.
The problem is treated as a multi-class classification problem
using a random forest classifier trained separately for each
target and an 80/20 grouped split between train and test sets,
i.e., train/test set devices are mutually exclusive.

Profiling results are summarized in Table V, which reports
the rank-1 classification accuracy of each attribute in addition
to the baseline accuracy obtained by labeling everything as the
mode value. Comparison to the baseline accuracy is necessary
since the attributes are largely imbalanced (e.g., there are 15
different device brands in the mobile dataset, but 47.9% are
Apple devices). Despite FPNET not explicitly being trained
to differentiate between host attributes, the embeddings are
indeed representative of various platforms. These results could
perhaps be improved with a model trained explicitly to predict
host attributes from phase images.

D. Ethics

Using a dataset that contains human-computer interaction to
investigate the privacy of Internet users presents several ethical
concerns. First, the data was collected from human subjects on
the Internet and contains observations in the wild [51], [52].
Although the data is publicly available, we obtained IRB
approval to use the dataset in our own study to ensure the
collection protocol met IRB standards at our institution.

Second, the dataset allows training a reasonably accurate
model able to identify users and devices based on peripheral
timestamps. There are indeed valid use cases for such a model,
for example as a transparent second authentication factor
during website interaction or the detection of bots (i.e., as a
CAPTCHA). However, there is a risk that this approach could
be used as a stateless tracking mechanism. We identity some
ways to mitigate this risk in the following section.

E. Mitigations

The ability to measure time from within a sandboxed
environment underlies many side-channel attacks that break
basic browser security policies [64]. Besides conventional
time sources (e.g., the Date and performance APIs), there
exist a variety of implicit clocks within JavaScript, includ-
ing SharedArrayBuffer and the Channel Messaging

Chrome Firefox

0.0

0.5

1.0

1.5
Em

be
dd

in
g

di
st

an
ce

pre-Spectre
post-Spectre

Fig. 8. Embedding distances pre/post Spectre mitigations applied.

API [65], [66]. As a result, mitigating browser side-channel
attacks has proven elusive, and preventing time-based finger-
printing is likely to face some of the same challenges.

The dual clock model specifies two independent clocks
and assumes that the reference clock runs much faster than
the subject clock, i.e., fR � fS . Breaking this assumption
would prevent the measurement of instantaneous phase, which
may be achieved by either increasing fS or lowering fR

in order to satisfy fR < fS. Some browsers have done
this: Tor Browser reduces the resolution of all major time
sources to 100ms, i.e., fR = 10Hz [67], and Firefox has a
privacy.resistFingerprinting setting that achieves
the same effect [44]. However, this does not prevent time
measurements through a side-channel, such as incrementing
a SharedArrayBuffer within a tight loop [65].

In addition to reduced clock resolution, modern web
browsers add jitter to high resolution time sources in order
to prevent side-channel attacks such as Spectre [45]: Chrome
v63 adds jitter to performance.now [68], and Firefox
v57 clamps performance.now to 20μs resolution [69].
We evaluate whether these mitigations have any effect on
device fingerprints using the techniques described in this paper,
noting that our work made use of Date.now timestamps
which are already truncated to 1ms. Using the mobile dataset
only, devices are separated based on browser version: Spectre
patches were applied starting in Chrome v63 and Firefox
v57. The within-class embedding distances of each condition
(pre/post-Spectre patches applied) are shown in Figure 8 and
compared using a two-sided Kolmogorov–Smirnov (KS) test.
In both cases, p > 0.05, indicating the null hypothesis (that
the distributions are identical) cannot be rejected. The Firefox
device fingerprint distances actually decrease, which can per-
haps be attributed to Firefox v60 increasing timer resolution
to 1ms which was previously 2ms in Firefox v59 [70].

An alternative mitigation is to inject noise into CS which
would alter the event timings before they reach the browser.
This approach requires temporarily buffering user input some-
where along the event processing pipeline. The buffering
duration should be random such that the true time of the
subject clock tick cannot be measured from within the browser.
Currently only privacy-centric Linux distributions Whonix and
Tails support this capability natively through a systemd
service named kloak, which works by grabbing the keyboard
device and rewriting events to the uinput module [71].

A similar capability could be built into the peripheral itself,
e.g., as a device that sits between the keyboard and the
host [72]. However, the buffering approach comes with a
tradeoff in that it introduces additional latency between the
user physically pressing a key and seeing a character appear
on screen, adding to the already significant input latency that
exists on some systems [12]. Additional complications arise
for touch and mouse pointer input where latency on the order
of 10ms can generally be perceived and spatial (in addition
to timing) features enable user profiling [36]. As behavioral
fingerprinting techniques advance, the need for these kinds of
behavioral privacy tools will continue to increase.

VIII. CONCLUSIONS

We introduced a new method to fingerprint devices based
on peripheral input. Keyboard and touchscreen events must
typically pass through a low-frequency polling process before
reaching the browser, and this process can exhibit device-
specific behavior. Device fingerprints are extracted from a
phase image that contains modular residues of the timestamps.
Within a population of 100k devices observed in the wild,
approximately 29.7k have a unique device fingerprint derived
from 300 keystrokes. Combined with features that capture user
behavior, this increases to 63.1k unique user+device pairs.

The ability to sense user input is ubiquitous among per-
sonal computers, thus the techniques described in this work
have wide applicability. Device fingerprinting could increase
security [25], for example as an additional factor part of a risk-
based authentication scheme [73]. At the same time, device
fingerprinting could be used to illegitimately track users [28].
It is perhaps worth considering these dual uses in the context of
applying mitigations, for example by making high resolution
time sources permission-based [66]. This idea has previously
been proposed but faces a number of challenges, such as
constructing normative language that users can understand (see
[74] and [75] for an informative discussion).

Future work may consider remote device fingerprinting
using the techniques described. Recent work has shown that
some web traffic is highly correlated with user input, opening
the possibility for remote device fingerprinting [76], [77].
The timing of other peripheral sensors is also of interest.
Our approach can be applied to mouse motion events, which
typically occur at a much higher rate than keyboard events
and thus enable fingerprinting with a shorter collection period.
Scroll events can also be generated at a high rate and on
touchscreen devices may reveal touchscreen sampling behavior
in the same way as keydown and keyup events.

Finally, it is worth further investigating what device prop-
erties influence the timing of peripheral events. Section VII-B
contains a preliminary analysis of fingerprint permanence but
did not examine how device behaviors (e.g., OS processes,
activity in concurrent browser tabs, USB hub contention, etc.)
affect peripheral event timestamps. If any of these sources did
have an effect on event timing, a side or covert channel may
be established, for example by estimating the activity of other
USB devices through DOM event timings.

REFERENCES

[1] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser finger-
printing,” ACM Transactions on the Web, vol. 14, no. 2, 2020.

[2] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
html5,” in Proc. Workshop on Web 2.0 Security and Privacy (W2SP).
IEEE, 2012.

[3] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile device
identification via sensor fingerprinting,” 2014.

[4] G. Baldini and G. Steri, “A survey of techniques for the identification
of mobile phones using the physical fingerprints of the built-in com-
ponents,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
2017.

[5] J. Zhang, A. R. Beresford, and I. Sheret, “SensorID: Sensor calibration
fingerprinting for smartphones,” in Proc. 2019 IEEE Symposium on
Security & Privacy (SP). IEEE, 2019.

[6] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the fingerprinters:
Learning to detect browser fingerprinting behaviors,” in Proc. 2021 IEEE
Symposium on Security & Privacy (SP). IEEE, 2021.

[7] T. Kohno, A. Broido, and K. Claffy, “Remote physical device finger-
printing,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, 2005.

[8] S. J. Murdoch, “Hot or not: Revealing hidden services by their clock
skew,” in Proc. 2006 ACM conference on Computer and communications
security (CCS). ACM, 2006.

[9] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock around the clock,”
in Proc. 2018 ACM Conference on Computer and Communications
Security (CCS). ACM, 2018.

[10] R. Wimmer, A. Schmid, and F. Bockes, “On the latency of USB-
connected input devices,” in Proc. 2019 ACM Conference on Human
Factors in Computing Systems (CHI). ACM, 2019.

[11] S. Jana and S. Kasera, “On fast and accurate detection of unauthorized
wireless access points using clock skews,” IEEE Transactions on Mobile
Computing, vol. 9, no. 3, 2010.

[12] D. Luu, “Keyboard latency,” Dan Luu’s Blog,
2021, http://web.archive.org/web/20210204012121/
https://danluu.com/keyboard-latency/.

[13] J. G. Ganssle, “A guide to debouncing,” The Ganssle Group, Tech. Rep.,
2004.

[14] “Deep dive: 120 hz fluid display,” OnePlus, OnePlus
Forum, 2020, http://web.archive.org/web/20210115102609/
https://forums.oneplus.com/threads/deep-dive-120-hz-fluid-display-
the-best-youll-lay-eyes-on-in-2020.1167710/.

[15] “Universal serial bus (usb) device class definition for
human interface devices (hid), firmware specification
version 1.11,” USB Implementers Forum, Tech. Rep., 2001,
https://www.usb.org/sites/default/files/documents/hid1_11.pdf.

[16] “Universal serial bus specification revision 2.0,” USB Implementers
Forum, Tech. Rep., 2000, https://www.usb.org/document-library/usb-20-
specification.

[17] Personal System/2 Hardware Interface Technical Reference,
1990, https://archive.org/details/bitsavers_ibmpcps284erface
TechnicalReferenceCommonInterfaces_39004874.

[18] A. Chapweske, “The ps/2 mouse interface,” Linux Kernel
Documentation, 2003, http://web.archive.org/web/20080823085651/
http://www.computer-engineering.org/ps2mouse/.

[19] “NO_HZ: reducing scheduling-clock ticks,” Linux Ker-
nel Organization, Linux Kernel Documentation, 2018,
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt.

[20] J. Hanrahan, M. E. Russinovich, D. Solomon, A. Ionescu, and B. Catlin,
WindowsÂ® Internals, Book 1. Microsoft Press, 2017.

[21] “Timers, timer resolution, and development of efficient code,” Microsoft,
Tech. Rep., 2010-06-16, http://web.archive.org/web/20170221051458/
http://download.microsoft.com:80/download/3/0/2/3027D574-C433-
412A-A8B6-5E0A75D5B 237/Timer-Resolution.docx.

[22] “HTML living standard,” WHATWG, Accessed 17 February 2021, 2021,
https://html.spec.whatwg.org/.

[23] “The rendering critical path,” The Chromium Projects, Accessed 20
March 2021, 2014, https://www.chromium.org/developers/the-rendering-
critical-path.

[24] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in Proc. 2016 IEEE Symposium on Security & Privacy (SP). IEEE,
2016.

[25] F. Alaca and P. C. van Oorschot, “Device fingerprinting for augmenting
web authentication,” in Proc. 2016 Annual Conference on Computer
Security Applications (ACSAC). ACM, 2016.

[26] K. Keys, “Internet-scale IP alias resolution techniques,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 1, 2010.

[27] D. Mills, “Network time protocol (version 3) specification, implemen-
tation and analysis,” Tech. Rep., 1992.

[28] Y. Cao, S. Li, and E. Wijmans, “(Cross-)Browser fingerprinting via OS
and hardware level features,” in Proc. 2017 Network and Distributed
System Security Symposium (NDSS). Internet Society, 2017.

[29] A. Das, N. Borisov, and E. Chou, “Every move you make: Exploring
practical issues in smartphone motion sensor fingerprinting and coun-
termeasures.” Sciendo, 2018.

[30] I. S. MacKenzie and C. Ware, “Lag as a determinant of human
performance in interactive systems,” in Proc. 1993 ACM Conference
on Human Factors in Computing Systems (CHI). ACM, 1993.

[31] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz, “Designing for
low-latency direct-touch input,” in Proc. 2013 Annual ACM Symposium
on User Interface Software and Technology (UIST). ACM, 2012.

[32] R. R. Plant, N. Hammond, and T. Whitehouse, “How choice of mouse
may affect response timing in psychological studies,” Behavior Research
Methods, Instruments, & Computers, vol. 35, no. 2, 2003.

[33] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection algo-
rithms for keystroke dynamics,” in Proc. 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks (DSN). IEEE, 2009.

[34] A. A. E. Ahmed and I. Traore, “A new biometric technology based
on mouse dynamics,” IEEE Transactions on Dependable and Secure
Computing, vol. 4, no. 3, 2007.

[35] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,” IEEE Transactions on Information Forensics
and Security, vol. 8, no. 1, 2013.

[36] L. A. Leiva, I. Arapakis, and C. Iordanou, “My mouse, my rules:
Privacy issues of behavioral user profiling via mouse tracking,” in
Proc. 2021 ACM SIGIR Conference on Human Information Interaction
and Retrieval (CHIIR), 2021.

[37] A. Acien, A. Morales, R. Vera-Rodriguez, J. Fierrez, and J. V. Monaco,
“TypeNet: Scaling up keystroke biometrics,” in Proc. 2020 IEEE Inter-
national Joint Conference on Biometrics (IJCB). IEEE, 2020.

[38] K. S. Killourhy, “The role of environmental factors in keystroke dy-
namics,” in Proc. IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) Supplemental Volume (Student Forum),
2009.

[39] R. Maxion and V. Commuri, “This is your behavioral keystroke biomet-
ric on rubbish data,” Carnegie Mellon University, Tech. Rep., 2020.

[40] V. Paxson, “On calibrating measurements of packet transit times,” in
Proc. 1998 Joint International Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS/PERFORMANCE). ACM
Press, 1998.

[41] B. Sadler and S. Casey, “On periodic pulse interval analysis with outliers
and missing observations,” IEEE Transactions on Signal Processing,
vol. 46, no. 11, 1998.

[42] S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah, “GTID: A technique
for physical device and device type fingerprinting,” IEEE Transactions
on Dependable and Secure Computing, vol. 12, no. 5, 2015.

[43] M. S. Bartlett, “The spectral analysis of point processes,” Journal of
the Royal Statistical Society: Series B (Methodological), vol. 25, no. 2,
1963.

[44] “Date.now(),” Mozilla, Accessed 20 March
2021, 2021, https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Date/now.

[45] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in Proc. 2019 IEEE
Symposium on Security & Privacy (SP). IEEE, 2019.

[46] T. Yamaguchi, M. Soma, D. Halter, R. Raina, J. Nissen, and M. Ishida,
“A method for measuring the cycle-to-cycle period jitter of high-
frequency clock signals,” in Proc. 19th IEEE VLSI Test Symposium
(VTS). IEEE.

[47] A. Hajimiri, S. Limotyrakis, and T. Lee, “Jitter and phase noise in ring
oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 6, 1999.

[48] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System noise,
OS clock ticks, and fine-grained parallel applications,” in Proc. 2005
annual international conference on Supercomputing (ICS). ACM, 2005.

[49] F. M. Proctor and W. P. Shackleford, “Real-time operating system timing
jitter and its impact on motor control,” in Proc. SPIE Conference on
Sensors and Control for Intelligent Manufacturing. SPIE, 2001.

[50] P. De, R. Kothari, and V. Mann, “Identifying sources of operating system
jitter through fine-grained kernel instrumentation,” in Proc. 2007 IEEE
International Conference on Cluster Computing. IEEE, 2007.

[51] V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta, “Obser-
vations on typing from 136 million keystrokes,” in Proc. 2018 ACM
Conference on Human Factors in Computing Systems (CHI). ACM,
2018.

[52] K. Palin, A. M. Feit, S. Kim, P. O. Kristensson, and A. Oulasvirta, “How
do people type on mobile devices?” in Proc. 2019 ACM International
Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileCHI). ACM, 2019.

[53] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PLoS ONE, vol. 9, no. 2, 2014.

[54] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embed-
ding for face recognition and clustering,” in Proc. 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.

[55] M. Gdeisat and F. Lilley, “One-dimensional phase unwrapping problem,”
Higher Colleges of Technology, Tech. Rep., 2011.

[56] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 2015 International Conference
on Learning Representations, (ICLR), 2015.

[57] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in Proc. 2005 Confer-
ence on Neural Information Processing Systems (NeurIPS), 2005.

[58] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, 2015.

[59] P. Grother, M. Ngan, and K. Hanaoka, “Face recognition vendor test
(FRVT) part 2,” Tech. Rep., 2019.

[60] N. Mantel, “The detection of disease clustering and a generalized
regression approach,” Cancer research, vol. 27, no. 2 Part 1, 1967.

[61] R. Clarke, “Human identification in information systems,” Information
Technology & People, vol. 7, no. 4, 1994.

[62] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “FP-STALKER:
Tracking browser fingerprint evolutions,” in Proc. 2018 IEEE Sympo-
sium on Security & Privacy (SP). IEEE, 2018.

[63] M. Schwarz, F. Lackner, and D. Gruss, “JavaScript template at-
tacks: Automatically inferring host information for targeted exploits,”
in Proc. 2019 Network and Distributed System Security Symposium
(NDSS). Internet Society, 2019.

[64] D. Kohlbrenner and H. Shacham, “On the effectiveness of mitigations
against floating-point timing channels,” in Proc. 2017 USENIX Security
Symposium (USENIX Security). USENIX, 2017.

[65] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
JavaScript,” in Financial Cryptography and Data Security. Springer,
2017.

[66] T. Rokicki, C. Maurice, and P. Laperdrix, “Sok: In search of lost time: A
review of javascript timers in browsers,” in Proc. 2021 IEEE European
Symposium on Security & Privacy (EuroS&P). IEEE, 2021.

[67] “Provide js with reduced time precision,” Tor Project, Accessed 20
March 2021, 2011, https://gitlab.torproject.org/legacy/trac/-/issues/1517.

[68] “Mitigating side-channel attacks,” The Chromium
Projects, Accessed 30 July 2021, 2018,
https://sites.google.com/a/chromium.org/dev/Home/chromium-
security/ssca.

[69] “Mitigations landing for new class of timing at-
tack,” Mozilla, Accessed 30 July 2021, 2018,
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-
class-timing-attack/.

[70] “Reduce timer resolution to 2ms,” Mozilla, Accessed 30 July 2021,
2018, https://bugzilla.mozilla.org/show_bug.cgi?id=1435296.

[71] J. V. Monaco and C. C. Tappert, “Obfuscating keystroke time intervals
to avoid identification and impersonation,” 2016.

[72] G. Shah and A. Molina, “Keyboards and covert channels,” in Proc. 2006
USENIX Security Symposium (USENIX Security). USENIX, 2006.

[73] S. Wiefling, L. L. Iacono, and M. DÃŒrmuth, “Is this really you? an
empirical study on risk-based authentication applied in the wild,” in
Proc. 2019 IFIP International Conference on ICT Systems Security and
Privacy Protection. Springer, 2019.

[74] “Reducing the precision of the domhighrestimestamp resolution,” Ac-
cessed 22 March 2021, 2018, https://github.com/w3c/hr-time/issues/56.

[75] “Gate timestamps behind existing permission prompts,” W3C Github
Issue, Accessed 22 March 2021, 2019, https://github.com/w3c/hr-
time/issues/64.

[76] J. V. Monaco, “Feasibility of a keystroke timing attack on search engines
with autocomplete,” in Proc. 2019 IEEE Security and Privacy Workshops
(SPW). IEEE, 2019.

[77] ——, “What are you searching for? a remote keylogging attack on search
engine autocomplete,” in Proc. 2019 USENIX Security Symposium
(USENIX Security). USENIX, 2019.

[78] N. H. F. Beebe, “Polynomial approximations,” in The Mathematical-
Function Computation Handbook. Springer International Publishing,
2017.

[79] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

[80] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 2015 International Conference on Learning Representations
(ICLR), 2015.

[81] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proc. 2016 USENIX Symposium on Operating
Systems Design and Implementation (OSDI). USENIX, 2016.

APPENDIX A: SUMMARY OF NOTATION

TABLE VI
SUMMARY OF NOTATION.

Symbol Description

ˆ estimated value
˙ intended value
CS subject clock
CR reference clock
ṫi time at the peripheral sensor
tSi time at the subject clock
tRi time at the reference clock
kSi subject clock tick
kRi reference clock tick
T S subject clock period (i.e., resolution)
TR reference clock period (i.e., resolution)
fS subject clock frequency
fR reference clock frequency
τRi time interval between events i− 1 and i
∆f frequency offset
s clock skew
φi instantaneous phase
φTi instantaneous phase with period T
Φ phase image

Our notation is summarized in Table VI. Some terminology
is borrowed from [7] (based on the NTP standard), [40],
and [41]. The subject clock and reference clock are denoted by
CS and CR, respectively. The superscript S denotes terms that
pertain to the subject clock, and R for the reference clock. The
subscript i always refers to the event index. Terms with hat
notationˆdenote variable estimates. Terms with dot notation ˙
denote true values that aren’t observed and can’t be estimated.
This includes the event times ṫi at the peripheral and the
assumed subject clock frequency ḟS, which may be specified
by a known standard (e.g., 125Hz USB polling rate).

APPENDIX B: ESTIMATING INSTANTANEOUS PHASE

Some implementation issues arise when computing Equa-
tion 10 directly using floating point representation. Millisecond
timestamps in epoch format currently require 13 decimal
places of precision, and precision lost is encountered even
with 64 bit floats. Exponential functions, e.g., exp in the
C library, commonly use polynomial approximations [78] in
which rounding errors from the large tRi and small T S are
compounded. We found that the resulting precision loss sig-
nificantly degraded device fingerprints: FPNET was learning
to take a “shortcut” by detecting differences in rounding error
based on the magnitude of tRi .

This issue can be eliminated by implementing Equation 10
with fixed point arithmetic for the critical terms. The equiva-
lence noted by Equation 11 implies that φi can be computed
with truncated division, rewritten as

φi = tRi − T S

⌊
tRi
T S

⌋
. (15)

Equation 15 suffers precision loss primarily from the second
term: rounding error is compounded due to floating point
approximation of T S which gets multiplied with the compara-
tively large

⌊
tRi
T S

⌋
. Computing instantaneous phase with clock

ticks rather than time allows the critical terms to be evaluated
with integer arithmetic. This is achieved by scaling up both
terms by the reference clock and subject clock frequencies.
Multiplying both terms by fRfS yields

φi =
fRfStRi − fR

⌊
tRi
T S

⌋
fRfS

(16)

where the tick count of the reference clock is expressed by
kRi = tRi f

R which is an integer by definition, and the final
division by fRfS scales the instantaneous phase back to units
of time rather than ticks. When fR and fS are both integers,
it is not until the final division that requires converting to a
float. At this point, the only rounding error introduced is due
to floating point representation of the rational. We additionally
note that the number of unique values φi can assume when
fR and fS are integers is min(fR, fR/ gcd(fR, fS)).

APPENDIX C: EMBEDDING MODEL STRUCTURE

FPNET structure is shown in Table VII. Typical of con-
volutional networks, most of the network parameters are
concentrated near the bottom of the network, and with 8.17M
parameters, this network is relatively small by deep learning
standards [79]. The fully connected layer (fc1) provides a
linear readout of the final convolutional layer, i.e., no activation
function is applied. All convolutional layers are followed by
ReLu activation and don’t use any padding. The pooling layers
use a “valid” padding strategy where the output from the
previous layer is padded by 1 if necessary. The depth of each
convolutional layer was balanced with batch size to fit within
GPU memory (40GB on NVIDIA A100). Additional filters
may capture more complex patterns, but a larger batch size
benefits the online triplet mining strategy.

TABLE VII
FPNET STRUCTURE.

layer output size kernel size stride params

input 481 × 600 × 1 0
conv1 481 × 598 × 24 1 × 3 × 24 1 × 1 96
pool1 481 × 299 × 24 1 × 2 × 24 1 × 2 0
conv2 481 × 297 × 32 1 × 3 × 32 1 × 1 2k
pool2 481 × 149 × 32 1 × 2 × 32 1 × 2 0
conv3 481 × 147 × 64 1 × 3 × 64 1 × 1 6k
pool3 481 × 74 × 64 1 × 2 × 64 1 × 2 0
conv4 481 × 72 × 64 1 × 3 × 64 1 × 1 12k
pool4 481 × 36 × 64 1 × 2 × 64 1 × 2 0
conv5 479 × 34 × 96 3 × 3 × 96 1 × 1 55k
pool5 479 × 17 × 96 1 × 2 × 96 1 × 2 0
conv6 477 × 15 × 96 3 × 3 × 96 1 × 1 83k
pool6 477 × 8 × 96 1 × 2 × 96 1 × 2 0
conv7 475 × 6 × 128 3 × 3 × 128 1 × 1 111k
pool7 475 × 3 × 128 1 × 2 × 128 1 × 2 0
conv8 473 × 1 × 128 3 × 3 × 128 1 × 1 148k
flatten 60544 0

fc1 128 7.75M
L2 128 0

total 8.17M

TABLE VIII
TAUNET STRUCTURE.

layer output size params

input N × 1 0
lstm N × 256 264k
fc1 128 33k
L2 128 0

total 297k

TAUNET structure is shown in Table VIII, containing a
single recurrent layer followed by a linear dense layer and
L2 normalization. Because this is a recurrent model, it can
handle variable length sequences along the time dimension.
This model is a simplified version of TypeNet, which contains
two long short-term memory (LSTM) layers with batch nor-
malization and dropout [37]. We found the linear dense layer
following the single LSTM in TAUNET to greatly improve
performance rather than using the final state of the LSTM
layer for embeddings.

Both models are trained for 100 epochs using Adam opti-
mization with learning rate 0.001, β1 = 0.9, and β2 = 0.999
[80], which are the default values in TensorFlow v2.4.1 [81].
Training on the 128,250 devices in the combined dataset, we
found both models to not be prone to overfitting: validation
accuracy plateaued after about 50 epochs and did not subse-
quently decrease.

	I Introduction
	II Background and related work
	II-A Input event processing
	II-A1 Sensor polling
	II-A2 USB and PS/2
	II-A3 Process scheduling
	II-A4 Browser event loop

	II-B Related work
	II-B1 Device and browser fingerprinting
	II-B2 Human computer interaction

	III Dual clock model
	III-A Overview
	III-B Estimating frequency
	III-C Estimating skew
	III-D Estimating instantaneous phase

	IV A first look at dual clocks in the wild
	IV-A Spectral analysis
	IV-B Information gained through clock skew
	IV-C Instantaneous phase

	V Device fingerprinting methodology
	V-A Phase images
	V-B FPNet
	V-C Model training

	VI Experimental results
	VI-A Device identification and verification
	VI-B User+Device pairing

	VII Discussion
	VII-A User vs. device behavior
	VII-B Fingerprint permanence
	VII-C System profiling
	VII-D Ethics
	VII-E Mitigations

	VIII Conclusions
	References

